53 research outputs found

    Power Quality Enhancement in Hybrid Photovoltaic-Battery System based on three–Level Inverter associated with DC bus Voltage Control

    Get PDF
    This modest paper presents a study on the energy quality produced by a hybrid system consisting of a Photovoltaic (PV) power source connected to a battery. A three-level inverter was used in the system studied for the purpose of improving the quality of energy injected into the grid and decreasing the Total Harmonic Distortion (THD). A Maximum Power Point Tracking (MPPT) algorithm based on a Fuzzy Logic Controller (FLC) is used for the purpose of ensuring optimal production of photovoltaic energy. In addition, another FLC controller is used to ensure DC bus stabilization. The considered system was implemented in the Matlab /SimPowerSystems environment. The results show the effectiveness of the proposed inverter at three levels in improving the quality of energy injected from the system into the grid.Peer reviewedFinal Published versio

    Extended grey wolf optimization–based adaptive fast nonsingular terminal sliding mode control of a robotic manipulator

    Get PDF
    This article proposes a novel hybrid metaheuristic technique based on nonsingular terminal sliding mode controller, time delay estimation method, an extended grey wolf optimization algorithm and adaptive super twisting control law. The fast convergence is assured by nonsingular terminal sliding mode controller owing to its inherent nonlinear property and no prior knowledge of the robot dynamics is required due to time delay estimation. The proposed extended grey wolf optimization algorithm determines an optimal approximation of the inertial matrix of the robot. Moreover, adaptive super twisting control based on the Lyapunov approach overcomes the disturbances and compensate the higher dynamics not achievable by the time delay estimation method. First, the fast nonsingular terminal sliding mode controller relying on time delay estimation is designed and is combined with super twisting control for chattering attenuation. The constant gain matrix of the time delay is determined by the proposed extended grey wolf optimization algorithm. Second, an adaptive law based on Lyapunov stability theorem is designed for improving tracking performance in the presence of uncertainties and disturbances. The novelty of the proposed method lies in the adaptive law where the prior knowledge of parametric uncertainties and disturbances is not needed. Moreover, the constant gain matrix of time delay estimation method is obtained using the proposed algorithm. The control method has been tested in simulation on a 3-degrees of freedom robotic manipulator in trajectory tracking mode in the presence of control disturbances and uncertainties. The results obtained confirmed the effectiveness, robustness and the superior precision of the proposed control method compared to the classical ones

    Multicell Converters Hybrid Sliding Mode Control

    No full text
    International audienceThis paper deals with hybrid sliding mode control of multicell power converter. It takes into account the hybrid aspect of the conversion structure which includes the converter continuous and discrete states. The basic idea used in this paper is to consider the interconnected systems that represent the hybrid model and to generate commutation surfaces based on a Lyapunov function that satisfies asymptotic stability. Simulations are carried-out on a two-cells converter to assess the performances and the robustness of the synthesized controller

    Hybrid sliding mode control of DFIG with MPPT using three multicellular converters

    No full text
    International audienceThis paper deals with hybrid sliding mode control of Doubly Fed Induction Generator DFIG with Maximum Power Point Tracking MPPT connected by rotor side to three bridges of Multicellular Converters MCCs. The hybrid aspect of the converters is taken into consideration which includes the continuous and discrete states of the converters. The vector control is used to command the DFIG speed and reactive stator power. The currents in Park d-q reference are controlled using hybrid sliding mode. The sliding surfaces are developed using Lyapunov stability method. The developed controller allows decoupled control of the stator active and reactive power. The final results are illustrated at the end of this paper to present the advantages of the control method developed in this paper

    A PI/Backstepping Approach for Induction Motor Drives Robust Control

    No full text
    International audienceThis paper presents a robust control design procedure for induction motor drives in case of modeling errors and unknown load torque. The control law is based on the combination of nonlinear PI controllers and a backstepping methodology. More precisely, the controllers are determined by imposing flux-speed tracking in two steps and by using appropriate PI gains that are nonlinear functions of the system state. A comparative study between the proposed PI/Backstepping approach and the feedback linearizing control is made by realistic simulations including load torque changes, parameter variations and measurement noises. Flux-speed tracking results show the proposed method effectiveness in presence of strong disturbances

    Commande Vision/Force de robots parallèles.

    Get PDF
    National audienceIn this paper, force and position control of parallel kinematic machines is discussed. Cartesian space computed torque control is applied to achieve force and position servoing directly in the task space within a sensor based control architecture. The originality of the approach resides in the use of a vision system as an exteroceptive pose measurement of a parallel machine tool for force control purposes

    A Brief Review on Mathematical Tools Applicable to Quantum Computing for Modelling and Optimization Problems in Engineering

    Get PDF
    Since its emergence, quantum computing has enabled a wide spectrum of new possibilities and advantages, including its efficiency in accelerating computational processes exponentially. This has directed much research towards completely novel ways of solving a wide variety of engineering problems, especially through describing quantum versions of many mathematical tools such as Fourier and Laplace transforms, differential equations, systems of linear equations, and optimization techniques, among others. Exploration and development in this direction will revolutionize the world of engineering. In this manuscript, we review the state of the art of these emerging techniques from the perspective of quantum computer development and performance optimization, with a focus on the most common mathematical tools that support engineering applications. This review focuses on the application of these mathematical tools to quantum computer development and performance improvement/optimization. It also identifies the challenges and limitations related to the exploitation of quantum computing and outlines the main opportunities for future contributions. This review aims at offering a valuable reference for researchers in fields of engineering that are likely to turn to quantum computing for solutions. Doi: 10.28991/ESJ-2023-07-01-020 Full Text: PD
    • …
    corecore